Kamis, 21 Juli 2016

Makalah Matematika dan Ilmu Alamiah Dasar Pertemuan 12-15

Makalah Matematika dan Ilmu Alamiah Dasar Pertemuan 12-15


1.1         Relasi

Relasi adalah suatu aturan yang memasangkan anggota himpunan satu ke himpunan lain. Relasi dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan anggota-anggota himpunan A dengan
anggota-anggota himpunan B.
Contoh :
Empat orang anak yaitu Ria, Rian, Reni, dan Revi memilih jenis musik yang mereka sukai. Ternyata:
Ria dan Rian memilih musik pop.
Rian dan Reni memilih musik rock.
Rian, Reni, dan Revi memilih musik jazz.
         Jika A = {Ria, Rian, Reni, Revi} dan B = {pop, rock, jazz}, maka dapat dibentuk relasi (hubungan) antara anggota-anggota himpunan A dengan anggota-anggota himpunan B. Relasi yang tepat dari himpunan A ke himpunan B adalah relasi “menyukai”.
         Ria dipasangkan dengan pop, berarti Ria menyukai musik pop, Rian dipasangkan dengan pop, rock, dan jazz, berarti Rian menyukai tiga jenis musik, yaitu musik pop, rock, dan jazz, Reni dipasangkan dengan rock dan jazz, berarti Reni menyukai dua jenis musik, yaitu musik rock dan jazz, sedangkan Revi dipasangkan dengan jazz, berarti Revi menyukai musik pjazz. Relasi terebut dapat ditunjukkan dengan jelas pada gambar dibawah ini.

1.      Menyatakan Relasi
Relasi antara dua himpunan dapat dinyatakan dengan diagram panah, diagram cartesius dan himpunan pasangan berurutan.
Contoh :
Empat orang anak yaitu Tias, Jamal, Farid, dan Dika memilih permainan yang mereka gemari. Ternyata:
Tias, Jamal, dan Farid memilih permainan voli.
Jamal dan Farid memilih permainan basket.
Farid dan Dika memilih permainan tenis.
Jika himpunan A = {Tias, Jamal, Farid, Dika} dan himpunan B = {voli, basket, tenis}. Terdapat relasi gemar bermain dari himpunan A ke himpunan B.
a.  Nyatakan dengan diagram panah,
b.  Nyatakan dengan diagram cartesius
c.  Nyatakan dengan himpunan pasangan berurutan.
Jawab :
a.      Diagram Panah

b.     Diagram Cartesius

c.      Himpunan Pasangan Berurutan.
{(Tias, Voli), (Jamal, Voli), (Jamal, Basket), (Farid, Voli), (Farid, Basket), (Farid, Tenis), (Dika, Tenis)}

1.2         Fungsi

Fungsi f adalah suatu relasi yang menghubungkan setiap anggota x dalam suatu himpunan yang disebut daerah asal (Domain) dengan suatu nilai tunggal f(x) dari suatu himpunan kedua yang disebut daerah kawan (Kodomain).
Himpunan nilai yang diperoleh dari relasi tersebut disebut daerah hasil ( Range).
Untuk memberi nama suatu fungsi dipakai sebuah huruf tunggal seperti f, g, dan huruf lainnya. Maka f(x), yang di baca “ f dari x “ menunjukkan nilai yang diberikan oleh f kepada x. Misalkan : f(x) = x+ 2, maka f(3) = 3 + 2.
Sifat Fungsi :
1) Fungsi f :A? B disebut fungsi INTO. Karena ada kodomain yang tidak berpasangan dengan domain.
2) Fungsi f :A? B disebut fungsi INJEKTIF. Karena setiap kodomain berpasangan tepat satu dengan domain.
3) Fungsi f:A? B disebut fungsi SUBJEKTIF. Karena setiap kodomain berpasangan dengan domain.
4) Fungsi f:A? B disebut fungsi BIJEKTIF. Karena sebuah fungsi bersifat injektif sekaligus subjektif (korespondensi satu-satu). Maka jumlah anggota himpunan harus sama n(A) = n(B) Pemetaan khusus yang terjadi jika setiap anggota A dipasangkan tepat satu ke anggota B dan anggota B dipasangkan tepat satu dengan anggota A disebut KORESPONDENSI SATU SATU.
Korespondensi satu-satu akan mungkin terjadi jika banyaknya anggota A = banyaknya anggota B.
Jenis-Jenis Fungsi
Jenis-jenis fungsi yang perlu kita ketahui diantaranya adalah :
A). Fungsi Konstan
Suatu fungsi f : A?B ditentukan dengan rumus f(x) disebut fungsi konstan. Apabila untuk setiap anggota domain fungsi selalu berlaku f(x) = C, di mana C bilangan konstan.
B). Fungsi Identitas
Fungsi Identitas adalah suatu fungsi f yang dinyatakan dalam rumus f(x) = x. Fungsi identitas sering dinyatakan dengan lambang I sehingga I(x) = x.
C). Fungsi Modulus Atau Fungsi Harga Mutlak
Fungsi modulus adalah fungsi f yang memuat bentuk nilai mutlak.
D). Fungsi Linear
Suatu fungsi f(x) disebut fungsi linear apabila fungsi itu ditentukan oleh f(x) = ax + b, di mana a ? 0, a dan b bilangan konstan dan grafiknya berupa garis lurus.
E). Fungsi Kuadrat
Suatu fungsi f(x) disebut fungsi kuadrat apabila fungsi itu ditentukan oleh f(x) = ax2 + bx + c, di mana a ? 0 dan a, b, dan c bilangan konstan dan grafiknya berupa parabola.
F). Fungsi Tangga (Bertingkat)
Suatu fungsi f(x) disebut fungsi tangga apabila grafik fungsi f(x) berbentuk interval-interval yang sejajar.
G). Fungsi Modulus
Suatu fungsi f(x) disebut fungsi modulus (mutlak) apabila fungsi ini memetakan setiap bilangan real pada domain fungsi ke unsur harga mutlaknya.
H). Fungsi Ganjil Dan Fungsi Genap
Suatu fungsi f(x) disebut fungsi ganjil apabila berlaku f(–x) = –f(x) dan disebut fungsi genap apabila berlaku f(–x) = f(x). Jika f(–x) ? –f(x) maka fungsi ini tidak genap dan tidak ganjil.
Fungsi Invers
Semua himpunan yang dipetakan oleh fungsi mempunyai invers. Invers dari himpunan tersebut dapat berupa fungsi atau bukan fungsi.
Suatu fungsi f akan mempunyai invers, yaitu f –1 jika dan hanya jika fungsi f bijektif atau dalam korespondensi satu-satu. Untuk menentukan fungsi invers dari suatu fungsi dapat dilakukan dengan cara berikut ini.
a. Buatlah permisalan f(x) = y pada persamaan.
b. Persamaan tersebut disesuaikan dengan f(x) = y, sehingga ditemukan fungsi dalam y dan nyatakanlah x = f(y).
c. Gantilah y dengan x, sehingga f(y) = f –1(x).
Aljabar Fungsi
a. Penjumlahan f dan g didefinisikan (f + g) (x) = f(x) + g(x).
b. Pengurangan f dan g didefinisikan (f – g)(x) = f(x) – g(x).
c. Perkalian f dan g didefinisikan (f +g)(x) = f(x) + g(x).

1.3         Proposisi

Pernyataan (Proposisi)
Di dalam matematika, tidak semua kalimat berhubungan dengan logika. Hanya kalimat yang bernilai benar atau salah saja yang digunakan dalam penalaran. Kalimat tersebut dinamakan proposisi(preposition).
Sebuah proposisi(proposition) atau statement ialah sebuah kalimat deklaratif yang memiliki tepat satu nilai kebenaran, yaitu:”Benar”(B) atau ”Salah”(S).
Kalimat tanya atau kalimat perintah tidak dianggap sebagai pernyataan.
Berikut ini adalah beberapa contoh proposisi :
a.  1 + 2 = 3
b.  Presiden RI tahun 2005 adalah SBY
c.   6 adalah bilangan prima
d. Warna bendera RI adalah biru dan merah
Kalimat-kalimat di atas adalah kalimat proposisi karena dapat diketahui benar/salahnya. Kalimat (a) dan (b) bernilai benar, sedangkan kalimat (c) dan (d) bernilai salah.
Kalimat-kalimat berikut bukan pernyataan :
1.   + 2 = 10.
2.  Minumlah sirup ini dua kali sehari.
3.  Alangkah cantiknya gadis itu!
2.     Mengkombinasikan Proposisi
Kita dapat membentuk proposisi baru dengan cara mengkombinasikan satu atau lebih proposisi. Operator yang digunakan untuk mengkombinasikan proposisi disebut operator logika. Operator logika dasar yang digunakan adalah dan (and),atau (or), dan tidak (not). Dua operator pertama dinamakan operator biner karena operator tersebut mengoperasikan dua buah proposisi, sedangkan operator ketiga dinamakan operator unerkarena ia hanya membutuhkan satu buah proposisi.
Proposisi baru yang diperoleh dari pengkombinasian tersebut dinamakan proposisi majemuk (compound proposition). Proposisi yang bukan merupakan kombinasi proposisi lain disebut proposisi atomik. Dengan kata lain, proposisi majemuk disusun dari proposisi-proposisi atomik. Metode pengkombinasian proposisi dibahas oleh matematikawan Inggris yang bernama George Boole pada tahun 1854 di dalam bukunya yang terkenal, The Laws of  Thought. Proposisi majemuk ada tiga macam, yaitu konjungsi, disjungsi, dan ingkaran.
Misalkan p dan q adalah proposisi.
Negasi
Untuk sembarang proposisi, p, yang memiliki nilai kebenaran, B/S, maka negasinya ditulis sebagai, ~p, memiliki nilai kebenaran lawannya, S/B.
Berikut ini adalah contoh negasi :
: Palembang adalah ibukota propinsi Sumatera Selatan.
~: Tidak benar Palembang adalah ibukota propinsi Sumatera    Selatan.
Atau
Palembang bukan ibukota propinsi Sumatera Selatan.
Di sini ~salah karena benar.
Tabel Kebenaran Dari Negasi :

Konjungsi
Konjungsi p dan q dinyatakan dengan, pΛq, adalah sebuah proposisi yang bernilai benar jika proposisi p dan q keduanya bernilai benar.
Berikut ini adalah contoh konjungsi :
: Hari ini hari Sabtu.
: Matahari bersinar cerah.
pΛ: Hari ini hari Sabtu dan matahari berinar cerah.
Tabel Kebenaran Dari Konjungsi :

Disjungsi
Disjungsi p dan q dinyatakan dengan, vq, adalah proposisi yang bernilai salah jika proposisi p dan q keduanya bernilai salah.
Berikut ini adalah contoh disjungsi :
: Hari ini hari Sabtu.
: Matahari bersinar cerah.
v: Hari ini hari Sabtu atau matahari berinar cerah.
Tabel Kebenaran Dari Disjungsi :

1.      Hukum-hukum Logika Proposisi
Dalam logika proposisi terdapat beberapa hukum atau sifat operasinya,yakni:
1)       Hukum Identitas
       p  v   F  ↔ p
p  Λ   T  ↔ p
2)     Hukum null/Dominasi
p  Λ   F  ↔  F
p  v  T  ↔  T
3)     Hukum Negasi
p  v  ~p  ↔ T
p  Λ   ~p  ↔ F
4)     Hukum Idempoten
p  v  p  ↔ p
p  Λ   p   ↔ p
5)     Hukum involusi (negasi ganda)
(i)  ~ (~p)  ↔ p
6)     Hukum Penyerapan
p  v  (p Λ q) ↔ p
p  Λ  (p v q) ↔ p
7)      Hukum Komutatif
p  v  q  ↔ q  v  p
p  Λ  q   ↔ q Λ  p
8)      Hukum Asosiatif
p v (q v r) ↔ (p v q) v r
p Λ (q Λ r ) ↔ (p Λ q)  Λ  r
9)     Hukum Distributif
p v (q Λ r) ↔ (p v q) Λ (p v r)
p Λ (q v r ) ↔ (p Λ q)  v  (p Λ r)
10)  Hukum De Morgan
~(p Λ q) ↔ ~p v ~q
~(p v q) ↔ ~p Λ ~q
2.     Tabel Kebenaran
Sebenarnya tabel kebenaran ini sudah saya bahas di atas. Pada bagian ini saya hanya ingin mengulangnya dan menjadikannya menjadi satu agar mudah untuk dibaca dan dipahami.

Logika proposisi tidak bisa menggambarkan sebagian besar proposisi dalam matematika dan ilmu komputer. Sebagai ilustrasi, perhatikan pernyataan berikut:
p : n adalah bilangan ganjil.
Pernyataan p bukan sebuah proposisi karena nilai kebenaran p bergantung pada nilai kebenaran n. Sebagai contoh, p benar jika n=103 dan salah jika n=8. Karena kebanyakan pernyataan dalam matematika dan ilmu komputer menggunakan peubah(variabel), maka kita harus mengembangkan sistem logika yang mencakup pernyataan tersebut.
Contoh Soal dan Pembahasannya
     1.     Tentukan negasi dari pernyataan-pernyataan berikut:
            a) Hari ini Jakarta banjir.
            b) Kambing bisa terbang.
            c) Didi anak bodoh
            d) Siswa-siswi SMANSA memakai baju batik pada hari Rabu.
            Pembahasan
a) Tidak benar bahwa hari ini Jakarta banjir.
b) Tidak benar bahwa kambing bisa terbang.
c) Tidak benar bahwa Didi anak bodoh
d) Tidak benar bahwa siswa-siswi SMANSA memakai baju batik pada hari Rabu.
Atau boleh juga dengan format berikut:
a)         Hari ini Jakarta tidak banjir.
b)         Kambing tidak bisa terbang.
c)         Didi bukan anak bodoh
d) Siswa-siswi SMANSA tidak memakai baju batik pada hari Rabu.
2.    Tentukan negasi (ingkaran) dari pernyataan-pernyataan berikut.
a)        p : Semua dokter memakai baju putih saat bekerja.
b)         p : Semua jenis burung bisa terbang
c)         p : Semua anak mengikuti ujian fisika hari ini.
Pembahasan
Pernyataan yang memuat kata "Semua" atau "Setiap" negasinya memuat kata "Beberapa" atau "Ada" seperti berikut:
a)         ~p : Ada dokter tidak memakai baju putih saat bekerja.
b)         ~p : Beberapa jenis burung tidak bisa terbang
c)         ~p : Beberapa anak tidak mengikuti ujian fisika hari ini.
3.   Ingkaran dari pernyataan “Beberapa bilangan prima adalah bilangan genap” adalah....
A.         Semua bilangan prima adalah bilangan genap.
B.         Semua bilangan prima bukan bilangan genap.
C.         Beberapa bilangan prima bukan bilangan genap.
D.         Beberpa bilangan genap bukan bilangan prima.
E.         Beberapa bilangan genap adalah bilangan prima.
(Soal UN Matematika Tahun 2008 P12)
            Pembahasan
  p          : Beberapa bilangan prima adalah bilangan genap
~p : Semua bilangan prima bukan bilangan genap
.

1.4         Logika

Logika matematika adalah sebuah cabang matematika yang merupakan gabungan dari ilmu logika dan ilmu matematika. Logika matematika akan memberikan landasan tentang bagaimana cara mengambil kesimpulan. Hal paling penting yang akan kalian dapatkan dengan mempelajari logika matematika adalah kemampuan dalam mengambil dan menentukan kesimpulan mana yang benar atau salah. Materi logika matematika yang akan dibahas kali ini adalah mengenai pernyataan, negasi , disjungsi , konjungsi , implikasi , biimplikasi, tautologi , kontradiksi , dua pernyataan yang ekuivalen, kalimat berkuantor, serta penarikan kesimpulan.


Setelah mengetahui apa itu logika matematika, kini kita mulai pembahasan materi mengenai hal-hal yang termasuk ke dalam logika matematika seperti yang ada di bawah ini:

Pernyataan

Pernyataan di dalam logika matematika adalah sebuah kalimat yang di dalamnya terkandung nilai-nilai yang dapat dinyatakan 'benar' atau 'salah' namun kalimat tersebut tidak bisa memiliki kedua-duanya (salah dan benar). Sebuah kalimat tidak bisa kita nyatakan sebagai sebuah pernyataan apabila kita tidak bisa menentukan apakah kalimat tersebut benar atau salah dan bersifat relatif. Di dalam logika matematika di kenal dua jenis pernyataan yaitu pernyataan tertuutp dan terbuka.
Pernyataan tertututp adalah kalimat pernyataan yang sudah bisa dipastikan nilai benar-salahnya.
Pernyataan terbuka adalah kalimat pernyataan yang belum bisa dipastikan nilai benar salahnya.
Agar lebih mudah memahaminya, perhatikan contoh berikut ini:
  • 30 + 5 = 35 (sudah pasti benar/pernyataan tertutup)
  • 30 x 5 = 200 (sudah pasti salah/pernyataan tertutup)
  • Buah maja rasanya pahit (harus dibuktikan dahulu/ pernyataan terbuka)
  • Jarak antara anyer dan jakarta adalah jauh (pernyataan relatif)

Negasi / pernyataan ingkaran

Negasi atau biasa disebut dengan ingkaran adalah kalimat berisi sanggahan, sangkalan, negasi biasanya dibentuk dengan cara menuliskan kata-kata 'tidak benar bahwa...' di depan pernyataan yang disangkal/sanggah,. Seperti pada contoh yang ada di bawah ini:
Pernyataan A : 
Becak memiliki roda tiga buah
Negasi dari pernyataan A : 
Tidak benar bahwa becak memiliki roda tiga buah

Pernyataan Majemuk

Pernyataan majemuk di dalam logika matematika terdiri dari disjungsi , konjungsi , implikasi , dan biimplikasi berikut masing-masing penjelasannya:

Konjungsi

Di dalam logika matematika, dua buah pernyataan dapat digabungkan dengan menggunakan simbol (^) yang dapat diartikan sebagai ‘dan’ . Tabel berikut ini menunjukan logika yang berlaku dama sistem konjungsi:
p
q
P ^ q
Logika matematika
B
B
B
Jika p benar dan q benar maka p dan q adalah benar
B
S
S
Jika p benar dan q salah maka p dan q adalah salah
S
B
S
Jika p salah dan q benar maka p dan q adalah salah
S
S
S
Jika p salah dan q salah  maka p dan q adalah salah
Dari table di atas dapat diambil kesimpulan bahwa di dalam konsep konjungnsi, kedua pernyataan haruslah benar agar dapat dianggap benar selain itu pernyataan akan dianggap salah.

Disjungsi

Selain menggunakan 'dan', dua buah pernyataan di dalam logika matematika dapat dihubungkan dengan simbol (v)yang diartikan sebagai 'atau'. Untuk memahaminya, perhatikan tabel di bawah ini:
p
q
P v q
Logika matematika
B
B
B
Jika p benar dan q benar maka p atau q adalah benar
B
S
B
Jika p benar dan q salah maka p atau q adalah benar
S
B
B
Jika p salah dan q benar maka p atau q adalah benar
S
S
S
Jika p salah dan q salah  maka p atau q adalah salah
Karena di dalam disjungsi menggunakan konsep ‘atau’ artinya apabila salah satu atau kedua pernyataan memiliki nilai benar maka logika matematikanya akan dianggap benar. Pernyataan akan dianggap salah bila keduanya memiliki nilai salah.

Implikasi

Implikasi merupakan logika matematika dengan konsep kesesuaian. Kedua pernyataan akan dihubungkan dengan menggunakan simbol ( => ) dengan makna 'jika p ... Maka q ...'. Untuk lebih jelasnya akan dijelaskan dalam tabel berikut:
p
q
p => q
Logika matematika
B
B
B
Jika awalnya BENAR lalu akhirnya BENAR maka dianggap BENAR
B
S
S
Jika awalnya BENAR lalu akhirnya SALAH maka dianggap SALAH
S
B
B
Jika awalnya SALAH lalu akhirnya BENAR maka dianggap BENAR
S
S
B
Jika awalnya SALAH lalu akhirnya SALAH maka dianggap BENAR

Biimplikasi

Di dalam biimplikasi, pernyataan akan dianggap benar bila keduanya memilki nilai sama-sama benar atau sama-sama salah. Selain itu maka pernyataan akan dianggap salah. Biimplikasi ditunjukan dengan symbol (ó) dengan makna ‘ p ….. Jika dan hanya jika q …..'
P
q
ó q
Logika matematika
B
B
B
P adalah BENAR jika dan hanya jika q adalah BENAR (dianggap benar)
B
S
S
P adalah BENAR jika dan hanya jika q adalah SALAH (dianggap salah)
S
B
S
P adalah SALAH jika dan hanya jika q adalah BENAR (dianggap salah)
S
S
B
P adalah SALAH jika dan hanya jika q adalah SALAH (dianggap benar)

Ekuivalensi pernyataan majemuk

Ekuivalensi pernyataan majemuk artinya persesuaian yang bisa diterapkan dalam konsep-taan majemuk yang telah di jelaskan di atas. dengan begitu kita dapat mengetahui negasi dari konjungsi, disjungsi, implikasi dan juga biimplikasi. konsep ekuivalensi dinyatakan dalam rumus-rumus tertentu seperti yang ada pada gambar di bawah ini:

Konvers, Invers dan Kontraposisi

Konsep ini dapat diterapkan dalam sebuah pernyataan implikasi. Setiap pernyataan implikasi memiliki sifat Konvers, Invers dan Kontraposisi seperti yang ada pada gambar bawah ini:

Kuantor pernyataan

Pernyataan berkuantor adalah bentuk pernyataan di mana di dalamnya terdapat konsep kuantitas. Ada dua jenis kuantor yaitu kuanor universal dan kuantor eksistensial.
Kuantor universal digunakan dalam pernyataan yang menggunakan konsep setiap atau semua.

Kuantor eksistensial digunakan dalam pernyataan yang mengandung konsep ada, sebagian, beberapa, atau terdapat.

Ingkaran dari pernyataan berkuantor

Pernyataan berkuantor juga memiliki negasi atau ingkaran. Negasi dari kuantor universal adalah kuantor eksistensial begitu jugas sebaliknya. Seperti pada contoh di bawah ini:

Penarikan Kesimpulan

Kesimpulan dapat dilakukan dengan menelaah premis atau pernyataan-pernyataan yang kebenarannya telah dketahui. Perhatikan beberapa konsep penarikan kesimpulan di dalam logika matematika berikut ini:








DAFTAR PUSTAKA